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Stability and bifurcation in an integral-delay model of cardiac reentry including spatial
coupling in repolarization
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We present the bifurcation analysis of a revised version of the integral-delay model@Courtemancheet al.,
Siam J. Appl. Math.56, 119~1996!# of reentry in a one-dimensional ring that includes a spatial coupling in the
calculation of the action potential duration. This coupling is meant to reproduce the modulation of repolariza-
tion by the diffusive current flowing through the intercellular resistance. We show that coupling modifies the
criterion for the stability of the period-1 solution, which is no longer uniquely related to the action potential
restitution curve, but depends also on the degree of coupling between cells and on the dispersion relation of the
velocity. Coupling also changes the scenario from an infinite-dimension Hopf bifurcation to a finite sequence
of Hopf bifurcations that take place at different ring lengths.
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Reentry, the name given to the self-sustained propaga
of an activation front in an excitable medium, is known to
a major mechanism of cardiac arrhythmia, and has been
served in clinical and experimental preparations@2–4#. It has
also been studied in a host of mathematical representa
of the cardiac excitable tissue@5–10#. A one-dimensional
ring, represented as a continuous cable of model car
cells, is among the simplest reaction-diffusion models
reentry@11–15#. The characteristics of reentry as a functi
of circumference of the ring~L! have been studied by nu
merical simulation for rings holding different versions of th
Beeler-Reuter~BR! ionic model of cardiac myocytes@13#. In
all instances, stable period-1 reentry was found to exist do
to a critical lengthLcrit . In most cases, solutions belowLcrit
were quasiperiodic, persisting until a minimalLmin below
which sustained reentry was impossible. Different types
bifurcation from periodic to quasiperiodic motion were o
served, each exhibiting a relatively small number of quas
eriodic modes of propagation@1,12–14#.

Upon superthreshold stimulation, the space-clamped
type models produce long-lasting action potentials~typically
100 ms or more! during which the system remains unexc
able. The duration of the action potential (DAP) depends on
the diastolic interval~R!, the time between the end of th
previous action potential, and the onset of the stimulation.
a consequence, the sequence ofR produced by a successio
of superthreshold stimuli applied with a constant period
stimulation ~T! can be described by the finite-differenc
equation@16#,

Ri 115T2DAP~Ri !. ~1!

The fixed point of Eq.~1!, corresponding to period-1 orbit, i
stable if dDAP/dR,1. Equation~1!, supplemented with a
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Email address: vineta@crhsc.umontreal.ca
1063-651X/2003/68~5!/051903~5!/$20.00 68 0519
on

b-

ns

ac
r

n

f

-

-

s

f

rule for subthreshold stimuli and representativeDAP(R)
functions, was shown to reproduce the bifurcation struct
of the entrainment responses of the space-clamped BR i
models as a function ofT @16#. The system is thus a low
dimensional model complementary to the nonlinear io
models, suitable for analytical investigation. This finit
difference model was extended by Courtemancheet al. to
represent reentry around a one-dimensional ring@1#. T(x),
the time between two successive activations, is the t
needed for the activation front to complete one rotation
any given locationx on the ring of lengthL. u(x), the speed
of the activation front, is only a function of the localR for
most ionic models. Thus,T(x)5*x2L

x @u„R(u)…#21du, and
Eq. ~1! can be rewritten as

R~x1L !5E
x

x1L 1

u„R~u!…
du2DAP„R~x!…. ~2!

Propagation proceeds as long asR(x) remains larger than
Rmin , theR value corresponding to the end of the refracto
period. Otherwise, reentry stops. Courtemancheet al. have
analyzed the integral-delay Eq.~2! in the case in which
DAP(R) andu(R) were monotonic increasing functions@1#.
They have proven that period-1 reentry, corresponding
R(x)5R* , a constant around the ring, is stable
dDAP/dRuR* ,1. The loss of stability occurs at the value
L where dDAP/dRuR* 51 through a Hopf bifurcation in
which an infinite number of quasiperiodic modes~numbered
k50,1,2,...) are created simultaneously. The spatial wa
lengths of these modes near the bifurcation are close
2L/(k11). They did not study the nature of the bifurcatio
which is expected to be either subcritical or supercritic
depending on the choice ofDAP(R) andu(R) functions@14#.
The main weakness of the integral-delay model regarding
capability to reproduce the dynamics of the ionic ring mod
is its prediction of the existence of an infinite number
quasiperiodic modes of propagation. Spatial oscillations oR
©2003 The American Physical Society03-1
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correspond to neighboring sites producing action potent
of different durations. In ionic models, these are associa
with spatial differences in voltage, which produce curre
through the coupling resistances that smooth the spatialDAP
profile and limit its gradient. This explains why only the tw
lowest modes (k50 and 1, Fig. 1! of quasiperiodic propaga
tion have been observed in the ionic models. In some
sions of the BR model, it has also been reported that
appearance of modes 0 and 1 was not simultaneous,
rather occurred at different values ofL @13#.

In a previous paper, we have proposed a modified vers
of Eq. ~2! that includes an empirical representation of t
effect of the resistive coupling on the spatial profile ofDAP
@14#. In this formulation,DAP„R(x)… in Eq. ~2! is replaced by
a weighted spatial average over a neighborhooda @chosen
such thatw (a)→0],

R~x1L !5E
x

x1L 1

u„R~u!…
du2E

2a

a

w~u!DAP„R~x1u!…du

~3!

with w (x)5x21 exp@2(bu)2#, in whichx21 is a normaliza-
tion coefficient andb22 is the variance of the weighting
function.

R(x1L) andR(x) are the state of recovery of a point
the time of the current and previous excitation, respectiv
R(x1L) is the time interval between the current excitati
and the end of the previous action potential. It thus cor
sponds to the time elapsed since the previous excitation,
resented by the first term on the right-hand side of Eq.~3!,
minus the duration of the action potential produced by t
previous excitation. Coupling allows the propagation, and
the new formulation it modulates the local repolarizatio
The first term on the right-hand side embeds the influenc
the points activated beforex1L in the current rotation. It is
the only way in which the distribution ofR during one rota-
tion has an influence on the local excitability during the sa
rotation. The second term describes the effect of the dis
bution of R in the previous rotation on the calculation ofR

FIG. 1. Spatial profiles ofR in mode 0~continuous curve! and
mode 1~dotted curve! as a function of the position of the activatio
front for successive turns. The modes were calculated with Eq~3!
and the functionsDAP(R) andu(R) derived from the modified BR
~MBR! ionic model@Fig. 2~c!# as described in@14#.
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during the current rotation. Since this previous excitation h
occurred with a diastolic intervalR(x), it would have pro-
duced an action potential of durationDAP„R(x)… if the point
has been disconnected from its neighbors. However, bec
of the effect of coupling represented by the integral ove
neighborhood of width 2a, the duration of the local action
potential is rather a weighted average of the duration of
action potentials that would have been produced at e
point of the neighborhood if it had been isolated. It could
argued that the coupling term handles the point and
neighbors as if their action potentials have been produ
simultaneously, neglecting the delay introduced by
propagation. For the BR model, this has a minimal influen
near the bifurcation since it occurs in a range ofR where the
speed is still constant and maximal. However, we have in
duced elsewhere a formulation including the delay of pro
gation to be used in a more general context@17#.

Numerical simulations of Eq.~3! ~with b5A800 cm and
a50.5 cm! were found to reproduce all the details of th
bifurcation, as well as the properties of the different quas
eriodic modes of propagation in the regime of fully deve
oped alternans far from the bifurcation, predicting accurat
the number of quasiperiodic modes, the evolution of th
spatiotemporal profile as a function of the loop length, a
the specific limiting loop length at which each mode w
disappearing. These numerical results thus suggest tha
integral delay embeds the minimal properties needed to c
ture the dynamics of the ionic loop model both close to a
far from the bifurcation. Moreover, the integral-delay mod
was also used to investigate the effect of external stimu
tions on reentry. It has uncovered new scenarios of ree
annihilation that have not been described before. These w
found afterwards to exist in the ionic loop model and to
related to observations made on a canine experimental m
of atrial flutter@13,14,17,18#. It has also been used to inve
tigate the dynamics of discordant alternans in paced ca
@19,20#. The purpose of this paper is to present an analyt
investigation of the bifurcation properties of Eq.~3!.

I. LINEARIZATION OF THE MODEL

In period-1 reentry,R(x)5R* fulfills the relation R*
5@L/u(R* )#2DAP(R* ). If both dDAP/dR.0 anddu/dR
.0, as it is assumed in this paper, a uniqueR* exists for
each L.@DAP(Rmin)1Rmin#u(Rmin) and dR* /dL.0. Since
for all the cases related to BR ionic models,L@2a and
exp@2(ba)2# is close to zero, we extend the limits of th
averaging integral from~2`,`! and obtain the linearized
version of Eq.~3! for a perturbationz(x) aroundR* as

z~x1L !5S 1

u~R* ! D 8E
x

x1L

z~s!ds2DAP8 ~R* !

3E
2`

`

w~z!z~x1s!ds.

Assuming thatz(x)5elx, the characteristic equation be
comes
3-2
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elLF S 1

lu~R* ! D 8
21G5S 1

lu~R* ! D 8
1DAP8 ~R* !e~l/2b!2

.

Defining lL5Q, v85@L/u(R* )#8, a85DAP8 (R* ), and h
5(2bL)22, this yields

eQ~v82Q!5v81a8QehQ2
. ~4!

Q corresponds to the eigenvalue of the linearized sys
expressed in the spatial nondimensional coordinatex/L, as
in @1#. We look for solutions that fulfill the conditions
Re(Q)50 andQ5 iq, corresponding to the loss of stabilit
of R* . The norm of Eq.~4! provides the first condition,

a85ehq2
, ~5!

in which the square root is removed becausea8.0. This
condition shows thata8 is always greater than 1 unlessh50,
which corresponds to the original model of Courtemanc
et al. without spatial averaging. The value ofa8 also in-
creases withq, which is specified by the second condition

tanS q

2D5
q

v8
~6!

obtained by solving Eq.~4! after substitution ofa8 by Eq.
~5!. The condition~6! does not depend explicitly on couplin
and it is also a condition for the characteristic equation
Eq. ~2!. It has an infinite number of solutions, symmetr
with respect to zero~zero is also a solution, indicating th
rotational invariance ofz around the ring!. Sincev8,0, the
successive positive solutionsq(k) are located between (2k
11) p and 2 (k11) p, wherek5@0,̀ # are the mode num
bers. Ifuv8u!1, as is the case over a largeR* interval for the
BR ionic models, the positive roots can be approximated

q~k!'~2k11!p1
2uv8u

~2k11!p
1O~v82!. ~7!

Inserting this approximation in Eq.~5! shows that~i! a8 is
always greater than 1 anda8→1 asbL→`, corresponding
to the case without coupling;~ii ! a8 increases withk, mean-
ing that higher modes appear at shorter values ofL; ~iii ! the
number of modes is limited sincea8, which is defined only
for R.Rmin , spans a limited range of values; and~iv! the
value a8 at the bifurcation also depends onv8, this effect
being more important for lower modes.

Since we assume thatdDAP/dR.0 anddu/dR.0, R*
~or L in the dimensional model! can be used as a bifurcatio
parameter. A specificq(k) is associated with a Hopf bifurca
tion if d Re(Q)/dR*5r8Þ0 at the bifurcation. The sign ofr 8
at the bifurcation, wherer 50 and conditions~5! and~6! are
satisfied, is determined by

r 8} ln a8@2v9~12cosq~k!!#2@q~k! sinq~k!2~q~k!!2#

3S a9

a8
2

h8

h
ln a8D . ~8!
05190
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The case withr 8,0 corresponds to a bifurcation where th
period-1 solution loses stability with respect to perturbatio
proportional to the mode associated withq(k) whenR* or L
are reduced. The dominant terms in Eq.~8! are those that are
proportional to (q(k))2. Sinceq(k) lies between (2k11) p
and 2 (k11) p, the sign of Eq.~8! depends ona9/a8
2h8/h ln a8. Typically, DAP(R) can be approximated asa`

2ga exp(2R/ta) in the range where the bifurcations occu
such thata9/a852ta

21,0 and is independent of coupling
On the other hand,2h8/h52/L dL/dR* .0 and this sec-
ond term is positive (a8>1 with a851 whenb→`!. De-
creasingb, which broadens the spatial extent of the couplin
enlargesa8, diminishes the value ofL where the bifurcation
occurs, and thus enlarges the positive term inr 8. As ex-
pected, the growth rate of the amplitude of the modes
comes more gradual as coupling is extended.

We have studied the influence ofb on the characteristics
of the first three solutionsk5$0,1,2% of Eqs. ~5! and ~6!
using theDAP(R) and u(R) curves obtained from the nu
merical simulations of a version of the BR model~MBR!
that has been investigated in details elsewhere@14#. As seen
in Fig. 2~c!, DAP(R)8.0 everywhere, but includes a portio
with slope,1 at low R values. Figure 2~a! showsa8(bL)
for eachk. To calculate these results, the close interval ofR*
in which a8>1 is found. EachR* in this set corresponds to
a value ofL „5@R* 1DAP(R* )#/u(R* )…, a8, andv8. With
these values, we solve Eq.~6! to obtainq(k) and Eq.~5! to
getb. The following points can be seen when looking at F
2~a!: ~i! the modes are ranked in increasing order with
spect toa8, meaning that their bifurcations occur at decrea
ing values ofR* ; ~ii ! the differences between the mod

FIG. 2. ~a! a8 and ~b! r 8 at the bifurcation for the modesk
5$0,1,2% as a function ofbL, usingDAP(R) and u(R) shown in
~c!. For each mode, two bifurcations points exist for a givenbL
@superimposed in~a!# corresponding, respectively, to the loss
stability of the period-1 solution at largeL ~thin lower curves! and
period 1 regaining stability at smallerL ~thick higher curves!.
3-3
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with respect to the value ofa8 where the bifurcations occu
increase asbL is diminished and spatial coupling is ex
tended;~iii ! a8 is everywhere greater than 1, and, asbL
→`, a8→1 and the curves corresponding to the differe
modes come together; and~iv! each mode has a limiting
value of bL below which it ceases to exist, the highe
modes disappearing first when hitting the maximuma8.

II. THE CHARACTERISTIC EQUATION NEAR THE
BIFURCATION

Settinga85e2hQ2
1e, we carry out an expansion of th

roots fora8 close to the bifurcation for eachq(k) to approxi-
mate the growth rates of the different modes. For simplic
we drop the indexk and writeQ as

Q5 iq1eq11e2q21O~v8!.

Introducing this expression in Eq.~4! and keeping the term
of first order ine yields

q15
e2hq2

@q~q2sinq!1 iq~v8212cosq!#

~v8212cosq!21~q2sinq!2 .

Using Eq.~7! for q, q1 can be approximated by

q1'e2h$~2k11!p2@2v8/~2k11!p#%2

3F12
2v8

~2k11!2p2 1 i
v8

~2k11!pG .
Since the oscillating solution has the formR(x)5R*
1b exp(Qx/L), the growth rate of thekth mode near the
bifurcation is given by

;expFee2h$~2k11!p2@2v8/~2k11!p#%2S 12
2v8

~2k11!2p2D x

L G .
The coupling inDAP reduces the growth rate of the differe
modes by a factor

expF2hS ~2k11!p2
2v8

~2k11!p D 2G,1,

such that the reduction of the growth rate is more import
for larger k. The instability associated with mode 0 shou
thus be dominant since it occurs at largerL and its amplitude
grows more rapidly. The spatial wavelength associated w
each mode can be approximated by

L~k!5
2pL

Im~Q!
'

2L

2k11
eh~2k11!2p2

1
2v8Le2h~2k11!2p2

~2k11!3p2

3@@224h~2k11!2p2#e2h~2k11!2p2
2e#1O~v82!.

~9!

When h50 ~equivalent tob→`!, the wavelengthL is re-
duced to
05190
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L~k!5
2L

2k11
1

2v8L~22e!

~2k11!3p2 1O~v82!

as in @1#. Averaging thus leads to an increase ofL (k)
through the exponential term in Eq.~9!, which can be related
to the smoothing of the voltage profile by diffusion current
the ionic model. The preceding analysis shows that, even
simple one-dimensional model of reentry, theDAP(R) resti-
tution curve is not the unique criterion governing the stabil
of the period-1 reentry. Introducing spatial coupling inDAP
changes the stability criterion and makes it dependent on
extent of the coupling as well as on theu(R) function
through condition~6!. It is thus not surprising that numerica
simulations of ionic models in two-dimensional media ha
shown that the stability of the periodic solutions could not
explained solely on the basis of theDAP(R) restitution curve.
Recently, Cytrynbaumet al. @21# have reached a similar con
clusion by analyzing a singular Fitzhugh-Nagumo model
reentry in the ring. In their model,DAP andR correspond to
the trajectory along the upper and lower branch of the s
manifold, while the transitions between the branches, wh
are sensitive to coupling, correspond to the activation a
repolarization fronts. Considering these two fronts as bou
ary layers, they have obtained a two-dimensional mapp
for the successive returns of these fronts at one location f
which they have deduced an analytical expression for
stability of the period-1 solution. It is not clear yet whether
similar approach could be applied to models of cardiac m
cytes since, in these, the repolarization phase is a slow
cess that does not display an abrupt transition that may
treated as a transition layer. Echebarriaet al. have also de-
veloped an alternative approach to analyze discordant a
nans in a paced cable@22#. They have derived an amplitud
equation from the reaction-diffusion system by using a
velopment in perturbation around the stable periodic so
tion. This model can probably be extended to study bifur
tion from periodic to quasiperiodic reentry in a loop, but
remains to be seen if it can predict the correct bifurcat
structure and how far from the bifurcation it can be and s
can give an appropriate description of the dynamics. Besi
it is not obvious that this model can be extended to deal w
resetting and annihilation of reentry by external stimulatio
an area of potential clinical application. The ability of o
empirical model to reproduce the details of the bifurcati
structure of the ionic model, its behavior far from the bifu
cation, as well as in the situation where the reentry is p
turbed by multiple stimulations, indicate that it embeds t
basic determinants of the dynamics. It will certainly be i
structive to compare our model to new alternative lo
dimensional formulations that may become available, es
cially if these were deduced from a formal analysis of ion
reaction-diffusion systems.

We thank Dr. N. Otani~CWRU, Cleveland, OH! for edi-
torial comments. This work was supported by grants fro
the Natural Sciences and Engineering Research Counc
Canada~A.V.! and the Fonds Que´bécois de la Recherche su
la Nature et les Technologies~P.C.!.
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