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Stability and bifurcation in an integral-delay model of cardiac reentry including spatial
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We present the bifurcation analysis of a revised version of the integral-delay h@ol@temanchet al,,
Siam J. Appl. Math56, 119(1996] of reentry in a one-dimensional ring that includes a spatial coupling in the
calculation of the action potential duration. This coupling is meant to reproduce the modulation of repolariza-
tion by the diffusive current flowing through the intercellular resistance. We show that coupling modifies the
criterion for the stability of the period-1 solution, which is no longer uniquely related to the action potential
restitution curve, but depends also on the degree of coupling between cells and on the dispersion relation of the
velocity. Coupling also changes the scenario from an infinite-dimension Hopf bifurcation to a finite sequence
of Hopf bifurcations that take place at different ring lengths.
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Reentry, the name given to the self-sustained propagatiofule for subthreshold stimuli and representatigq(R)
of an activation front in an excitable medium, is known to befunctions, was shown to reproduce the bifurcation structure
a major mechanism of cardiac arrhythmia, and has been olpf the entrainment responses of the space-clamped BR ionic
served in clinical and experimental preparatif®s4]. Ithas  models as a function of [16]. The system is thus a low-
also been studied in a host of mathematical representatioimensional model complementary to the nonlinear ionic
of the cardiac excitable tissu®-10. A one-dimensional models, suitable for analytical investigation. This finite-
ring, represented as a continuous cable of model cardiagifference model was extended by Courtemanehbal. to
cells, is among the simplest reaction-diffusion models forrepresent reentry around a one-dimensional fihlg T(x),
reentry[11-13. The characteristics of reentry as a functionthe time between two successive activations, is the time
of circumference of the ringlL) have been studied by nu- needed for the activation front to complete one rotation at
merical simulation for rings holding different versions of the any given locatiorx on the ring of lengti.. 6(x), the speed
Beeler-ReutefBR) ionic model of cardiac myocytdd3]. In  of the activation front, is only a function of the locRlfor

all instances, stable period-1 reentry was found to exist downost ionic models. ThusT(x)=J%_, [ 6(R(u))] *du, and
to a critical lengthl .. In most cases, solutions beldwy  Eq. (1) can be rewritten as

were quasiperiodic, persisting until a minimia},;, below
which sustained reentry was impossible. Different types of 1
bifurcation from periodic to quasiperiodic motion were ob- R(x+ L)=J AR
served, each exhibiting a relatively small number of quasip- X

eriodic modes of propagatidi,12—-14.

Upon superthreshold stimulation, the space-clamped BRPropagation proceeds as long Réx) remains larger than
type models produce long-lasting action potentigypically ~ Rmin, the R value corresponding to the end of the refractory
100 ms or morgduring which the system remains unexcit- period. Otherwise, reentry stops. Courtemanehel. have
able. The duration of the action potenti® {>) depends on analyzed the integral-delay E@2) in the case in which
the diastolic intervalR), the time between the end of the Dap(R) and 6(R) were monotonic increasing functiofis].
previous action potential, and the onset of the stimulation. Ad hey have proven that period-1 reentry, corresponding to
a consequence, the sequenceéRgiroduced by a succession R(x)=R*, a constant around the ring, is stable if
of superthreshold stimuli applied with a constant period ofdDap/dR|g«<1. The loss of stability occurs at the value of
stimulation (T) can be described by the finite-difference L where dDap/dR|gr«=1 through a Hopf bifurcation in
equation[16], which an infinite number of quasiperiodic modesimbered

k=0,1,2,...) are created simultaneously. The spatial wave-
Ri+1=T—Dap(Ri). (1) lengths of these modes near the bifurcation are close to
2L/(k+1). They did not study the nature of the bifurcation,
The fixed point of Eq(1), corresponding to period-1 orbit, is which is expected to be either subcritical or supercritical,
stable if dD,p/dR<1. Equation(1l), supplemented with a depending on the choice 8f,p(R) and #(R) functions[14].
The main weakness of the integral-delay model regarding its
capability to reproduce the dynamics of the ionic ring models
*Corresponding author. is its prediction of the existence of an infinite number of
Email address: vineta@crhsc.umontreal.ca quasiperiodic modes of propagation. Spatial oscillation® of

X+L

du—Dap(R(X)). @
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during the current rotation. Since this previous excitation has
occurred with a diastolic intervaR(x), it would have pro-
duced an action potential of durati@p(R(X)) if the point
has been disconnected from its neighbors. However, because
of the effect of coupling represented by the integral over a
neighborhood of width &, the duration of the local action
potential is rather a weighted average of the duration of the
action potentials that would have been produced at each
point of the neighborhood if it had been isolated. It could be
argued that the coupling term handles the point and his
neighbors as if their action potentials have been produced
s simultaneously, neglecting the delay introduced by the
WL propagation. For the BR model, this has a minimal influence
near the bifurcation since it occurs in a rangeRofhere the
FIG. 1. Spatial profiles oR in mode O(continuous curveand  speed is still constant and maximal. However, we have intro-
mode 1(dotted curvgas a function of the position of the activation gyced elsewhere a formulation including the delay of propa-
front for successive turns. The modes were calculated with 3q. gation to be used in a more general confexd].
and the_ fu_nctionsDAp(_R) and 4(R) deriyed from the modified BR Numerical simulations of Eq3) (with 8= m cm and
(MBR) ionic model[Fig. 2c)] as described if14]. a=0.5 cn) were found to reproduce all the details of the
_ ) ) ) _ . bifurcation, as well as the properties of the different quasip-
corrgspond to ne_|ghbor|n.g §|tes producing action potentlalsriodic modes of propagation in the regime of fully devel-
of different durations. In ionic models, these are associateflneq ajternans far from the bifurcation, predicting accurately
with spatial differences in voltage, which produce currentspe nymber of quasiperiodic modes, the evolution of their
through the coupling resistances that smooth the spaal  gpatiotemporal profile as a function of the loop length, and
profile and limit its grad|ent..Th|s explalr)s vvhy .only the two the specific limiting loop length at which each mode was
lowest modesK=0 and 1, Fig. 1 of quasiperiodic propaga- gisappearing. These numerical results thus suggest that our
tl_on have been observed_ in the ionic models. In some Velintegral delay embeds the minimal properties needed to cap-
sions of the BR model, it has also been reported that thg,re the dynamics of the ionic loop model both close to and
appearance of modes 0 and 1 was not simultaneous, byl; from the bifurcation. Moreover, the integral-delay model
rather occurred at different values bf 13]. - ~ was also used to investigate the effect of external stimula-
In & previous paper, we have proposed a modified versiofons on reentry. It has uncovered new scenarios of reentry
of Eq. (2) that includes an empirical representation of the,nninilation that have not been described before. These were
effect of the resistive coupling on the spatial profiled{p  found afterwards to exist in the ionic loop model and to be
[14]. In this formulationD xp(R(x)) in Eq. (2) is replaced by  rg|ated to observations made on a canine experimental model
a weighted spatial average over a neighborhaddhosen  of atrial flutter[13,14,17,18 It has also been used to inves-
such thatw (a)—0], tigate the dynamics of discordant alternans in paced cable
[19,20. The purpose of this paper is to present an analytical
investigation of the bifurcation properties of ES).

X+L

1 a
aRW) Y fﬁaW(U)DAp(R(H u))du

() I. LINEARIZATION OF THE MODEL

R(x+ L):f

X

with w (X) =y " exp —(Bu)?), in which  * is a normaliza- In period-1 reentry,R(x)=R* fulfills the relation R*

tion coefficient andg~2 is the variance of the weighting =[L/6(R*)]—Dp(R*). If both dDpp/dR>0 anddé/dR

function. _ >0, as it is assumed in this paper, a unidrie exists for
R(x+L) andR(x) are the state of recovery of a point at ., L>[D ap(Rrnir) + Rrin]6(Ryin) and dR*/dL>0. Since

the time of the current and previous excitation, respectivelyfOr all the cases related to BR ionic modelss2a and
R(x+L) is the time interval between the current excitationexq_(ﬁa)z] is close to zero. we extend the limits of the

and the end of the previous action potential. It thus COMe%yeraging integral from(—,) and obtain the linearized
sponds to the time elapsed since the previous excitation, reRersion of Eq.(3) for a pertu'rbatiorz(x) aroundR* as
resented by the first term on the right-hand side of B4y,

minus the duration of the action potential produced by that 1\ el

previous excitation. Coupling allows the propagation, and in zZ(x+L)= (_*) f z(s)ds— D p(R*)

the new formulation it modulates the local repolarization. O(R*)) Jx

The first term on the right-hand side embeds the influence of "
the points activated beforet+ L in the current rotation. It is xf w(z)z(x+s)ds.

the only way in which the distribution d® during one rota- %

tion has an influence on the local excitability during the same

rotation. The second term describes the effect of the distriAssuming thatz(x)=e*, the characteristic equation be-
bution of R in the previous rotation on the calculation Bf comes
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Defining A\L=Q, v'=[L/0(R*)]’, a’'=Dsp(R*), and 3
=(2BL) 2, this yields T
""""""" e
v’ —Q)=v'+a'Qe™?’, 4)
Q corresponds to the eigenvalue of the linearized system 400 eeeseemTTTTTITTION .

expressed in the spatial nondimensional coordixdte as
in [1]. We look for solutions that fulfill the conditions
Re@)=0 andQ=iq, corresponding to the loss of stability
of R*. The norm of Eq(4) provides the first condition,

a'=em (5)

in which the square root is removed becaase-0. This
condition shows thaa’ is always greater than 1 unlegs-0,
which corresponds to the original model of Courtemanche 0
et al. without spatial averaging. The value af also in-
creases withg, which is specified by the second condition

q
tar( E

obtained by solving Eq(4) after substitution ofa’ by Eq.
(5). The condition(6) does not depend explicitly on coupling
and it is also a condition for the characteristic equation ofThe case withr’ <0 corresponds to a bifurcation where the
Eqg. (2). It has an infinite number of solutions, symmetric period-1 solution loses stability with respect to perturbations
with respect to zerdzero is also a solution, indicating the proportional to the mode associated wiff’ whenR* or L
rotational invariance of around the ring Sincev’<0, the  are reduced. The dominant terms in E8). are those that are
successive positive solutiorgg® are located between k2  proportional to )2, Sinceq™ lies between (R+1) 7
+1) 7 and 2 K+1) 7, wherek=[0,<] are the mode num- and 2 k+1) =, the sign of Eq.(8) depends ona"/a’

50

100 150 200
R (ms)

FIG. 2. () a’ and (b) r’ at the bifurcation for the models
={0,1,2 as a function of8L, usingDsp(R) and 6(R) shown in
=— (6) (c). For each mode, two bifurcations points exist for a giy&n
v [superimposed ifa)] corresponding, respectively, to the loss of
stability of the period-1 solution at larde (thin lower curves and
period 1 regaining stability at smallér(thick higher curves

bers. If|v’| <1, as is the case over a larB& interval for the  — 7'/ yIna’. Typically, D p(R) can be approximated as,
BR ionic models, the positive roots can be approximated by- y, exp(—R/7,) in the range where the bifurcations occur,
o such thata"/a’ = — 7, '<0 and is independent of coupling.
2’ On the other hand;- '/ 7=2/L dL/dR* >0 and this sec-
(K) 12 /N
a (2k+1)mr+ (2k+ 1)7T+O(U )- ™ ond term is positive §'=1 with a’=1 when g—x). De-

creasingB, which broadens the spatial extent of the coupling,

Inserting this approximation in Eq5) shows that(i) a’ is  enlargesa’, diminishes the value df where the bifurcation
always greater than 1 aral —1 asBL—, corresponding occurs, and thus enlarges the positive ternrin As ex-
to the case without couplingii) a’ increases wittk, mean-  pected, the growth rate of the amplitude of the modes be-
ing that higher modes appear at shorter valuek; dfii) the ~ comes more gradual as coupling is extended.
number of modes is limited sina, which is defined only We have studied the influence gfon the characteristics
for R>R,,, Spans a limited range of values; afid) the  of the first three solution&={0,1,2 of Egs. (5) and (6)
value a’ at the bifurcation also depends on, this effect using theDp(R) and #(R) curves obtained from the nu-
being more important for lower modes. merical simulations of a version of the BR mod&/IBR)

Since we assume thatD,p/dR>0 anddé§/dR>0, R* that has been investigated in details elsewh&dd. As seen
(or L in the dimensional modetan be used as a bifurcation in Fig. 2(c), Dap(R)'>0 everywhere, but includes a portion
parameter. A specifiq¥) is associated with a Hopf bifurca- with slope <1 at low R values. Figure @) showsa’(AL)
tion if d Re@Q)/dR* =r’+0 at the bifurcation. The sign af for eachk. To calculate these results, the close intervaRbdf
at the bifurcation, where=0 and conditiong5) and(6) are  in whicha’=1 is found. EactR* in this set corresponds to

satisfied, is determined by a value ofL (=[R* +Dp(R*)]/6(R*)), @', andv'. With
these values, we solve E() to obtaing® and Eq.(5) to

r'=lna’[2v"(1—cosq™ ) ]—[q® sing®—(q*)?] get B. The following points can be seen when looking at Fig.

, , 2(a): (i) the modes are ranked in increasing order with re-

« a n—lna’ ®) spect toa’, meaning that their bifurcations occur at decreas-

a' g ' ing values ofR*; (ii) the differences between the modes
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with respect to the value @&’ where the bifurcations occur 2L 20'L(2—€)
increase as3L is diminished and spatial coupling is ex- AR =57+ (2k+1)°72 +0(v'?)
tended;(iii) a’ is everywhere greater than 1, and, gk
—oo, a’—1 and the curves corresponding to the different
modes come together; ar(@d/) each mode has a limiting
value of BL below which it ceases to exist, the highest
modes disappearing first when hitting the maximam

as in[1]. Averaging thus leads to an increase &f(k)
through the exponential term in E(®), which can be related

to the smoothing of the voltage profile by diffusion current in
the ionic model. The preceding analysis shows that, even in a
simple one-dimensional model of reentry, thgp(R) resti-
tution curve is not the unique criterion governing the stability
of the period-1 reentry. Introducing spatial couplingDnp

Il. THE CHARACTERISTIC EQUATION NEAR THE
BIFURCATION

Settinga’' =e~ Q%4 €, we carry out an expansion of the i~ o .
roots fora’ close to the bifurcation for eadif® to approxi- changes the stability criterion and makes it dependent on the

mate the growth rates of the different modes. For simpliciw,ter:(tenthOf th;t_co%plllrtlg ?ﬁ Welltas on .tmti) tfuncUon |
we drop the index and writeQ as rough condition6). It is thus not surprising that numerica

simulations of ionic models in two-dimensional media have
Q=iq+ eqy+ €2q,+O(v"). shown that the stability of the periodic squtiqns'couId not be
explained solely on the basis of tBgp(R) restitution curve.
Introducing this expression in E¢4) and keeping the term Recently, Cytrynbauret al.[21] have reached a similar con-
of first order ine yields clusion by analyzing a singular Fitzhugh-Nagumo model of
reentry in the ring. In their modeD ,p andR correspond to
the trajectory along the upper and lower branch of the slow
manifold, while the transitions between the branches, which
are sensitive to coupling, correspond to the activation and
repolarization fronts. Considering these two fronts as bound-
ary layers, they have obtained a two-dimensional mapping
for the successive returns of these fronts at one location from
which they have deduced an analytical expression for the
stability of the period-1 solution. It is not clear yet whether a
similar approach could be applied to models of cardiac myo-
cytes since, in these, the repolarization phase is a slow pro-
cess that does not display an abrupt transition that may be
treated as a transition layer. Echebartzaal. have also de-
veloped an alternative approach to analyze discordant alter-
nans in a paced cabl@2]. They have derived an amplitude
equation from the reaction-diffusion system by using a de-
velopment in perturbation around the stable periodic solu-
tion. This model can probably be extended to study bifurca-

e 7q(q—sing) +iq(v’ —1—cosq)]
1_ (v’ —1-cosq)*+(q—sing)?

Using Eq.(7) for g, g; can be approximated by

qu~e" 2{(2k+1)7m—[20" 1(2k+ 1) 7]}2

2v’ N v’
(2k+ 1272 2kt D)7

X|1-

Since the oscillating solution has the forlR(x)=R*
+bexp@xL), the growth rate of thé&kth mode near the
bifurcation is given by

NeX[{ ee” 77{(2|<+1)77[2u’/(2k+1),.,]}2( 1— 2v ) X

(2k+1)27%) L

’ 2

2v
(2k+1) 7

(2k+1)7 <1,

tion from periodic to quasiperiodic reentry in a loop, but it
The coupling inD 5p reduces the growth rate of the different remains to be seen if it can predict the correct bifurcation
modes by a factor structure and how far from the bifurcation it can be and still
can give an appropriate description of the dynamics. Besides,
lf{— it is not obvious that this model can be extended to deal with
ex n . S . .
resetting and annihilation of reentry by external stimulations,
an area of potential clinical application. The ability of our
such that the reduction of the growth rate is more importanempirical model to reproduce the details of the bifurcation
for largerk. The instability associated with mode 0 should structure of the ionic model, its behavior far from the bifur-
thus be dominant since it occurs at largesind its amplitude  cation, as well as in the situation where the reentry is per-
grows more rapidly. The spatial wavelength associated withurbed by multiple stimulations, indicate that it embeds the

each mode can be approximated by basic determinants of the dynamics. It will certainly be in-
, structive to compare our model to new alternative low-
27l 2L , o 2v'Le2m2k+l)m dimensional formulations that may become available, espe-
A=~ 72k ially if th deduced f formal analysis of ioni
Im(Q)  2k+1 (2k+1)372 cially if these were deduced from a formal analysis of ionic
reaction-diffusion systems.
_ 2 _21a— n(2k+1)272 _ ’2 .
X[[2—47n(2k+1)*m*]e” ™ €]+0(v"). We thank Dr. N. Otan{CWRU, Cleveland, OMfor edi-

(9)  torial comments. This work was supported by grants from
the Natural Sciences and Engineering Research Council of
When =0 (equivalent tog—x), the wavelength\ is re- CanadaA.V.) and the Fonds Quxecois de la Recherche sur
duced to la Nature et les Technologi€B.C).
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